mRNA Cap Methylation in Pluripotency and Differentiation

نویسندگان

  • Laura Grasso
  • Olga Suska
  • Lindsay Davidson
  • Thomas Gonatopoulos-Pournatzis
  • Ritchie Williamson
  • Lize Wasmus
  • Simone Wiedlich
  • Mark Peggie
  • Marios P. Stavridis
  • Victoria H. Cowling
چکیده

The mRNA cap recruits factors essential for transcript processing and translation initiation. We report that regulated mRNA cap methylation is a feature of embryonic stem cell (ESC) differentiation. Expression of the mRNA cap methyltransferase activating subunit RAM is elevated in ESCs, resulting in high levels of mRNA cap methylation and expression of a cohort of pluripotency-associated genes. During neural differentiation, RAM is suppressed, resulting in repression of pluripotency-associated factors and expression of a cohort of neural-associated genes. An established requirement of differentiation is increased ERK1/2 activity, which suppresses pluripotency-associated genes. During differentiation, ERK1/2 phosphorylates RAM serine-36, targeting it for ubiquitination and proteasomal degradation, ultimately resulting in changes in gene expression associated with loss of pluripotency. Elevated RAM expression also increases the efficiency of fibroblast reprogramming. Thus, the mRNA cap emerges as a dynamic mark that instructs change in gene expression profiles during differentiation and reprogramming.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Cold Atmospheric Plasma on Gene Expression and Methylation of Genes Involved in Colorectal Cancer

Background and purpose: Colorectal cancer (CRC) is ranked as the second most common cancer in men and the third most common cancer in women worldwide. Routine treatments have many side effects and little efficiency. The aim of this study was to investigate the effects of Cold Atmospheric Plasma (CAP) on epigenetic changes of some genes involved in CRC progression. Materials and methods: Prolif...

متن کامل

Analysis of Promyelocytic Leukemia in Human Embryonic Carcinoma Stem Cells During Retinoic Acid-Induced Neural Differentiation

Background: Promyelocytic leukemia protein (PML) is a tumor suppressor protein that is involved in myeloid cell differentiation in response to retinoic acid (RA). In addition, RA acts as a natural morphogen in neural development. Objectives: This study aimed to examine PML gene expression in different stages of in vitro neural differentiation of NT2 cells, and to investigate the possible role o...

متن کامل

Methylation and mRNA expression levels of P15, death-associated protein kinase, and suppressor of cytokine signaling-1 genes in multiple myeloma

Objective(s): The aim of this study was to investigate the methylation status and mRNA expression levels of P15, death-associated protein kinase (DAPK), and suppressor of cytokine signaling-1 (SOCS1) genes in multiple myeloma (MM). Materials and Methods: The bone marrow samples of 54 MM patients were collected and the methylation status of the P15, DAPK, and SOCS1 gene promoter regions was dete...

متن کامل

S-adenosyl homocysteine hydrolase is required for Myc-induced mRNA cap methylation, protein synthesis, and cell proliferation.

The c-Myc proto-oncogene promotes mRNA cap methylation, which is essential for almost all mRNA translation. The mRNA cap methylation reaction produces an inhibitory byproduct, S-adenosyl homocysteine. Here we report that Myc promotes upregulation of S-adenosyl homocysteine hydrolase (SAHH), an enzyme which hydrolyzes S-adenosyl homocysteine, thus neutralizing its inhibitory effects, and this is...

متن کامل

Regulation of mRNA cap methylation

The 7-methylguanosine cap added to the 5' end of mRNA is essential for efficient gene expression and cell viability. Methylation of the guanosine cap is necessary for the translation of most cellular mRNAs in all eukaryotic organisms in which it has been investigated. In some experimental systems, cap methylation has also been demonstrated to promote transcription, splicing, polyadenylation and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016